PORT HEIDEN (USA ALASKA) Altitude: 29 m.
Latitude: 56°58’N Longitude: 158°39’W
Temperature observation period.: 1988-1994 (7)
Rainfall observation period.......: 1988-1994 (7)

<table>
<thead>
<tr>
<th>(°C/mm)</th>
<th>Ti</th>
<th>Mi</th>
<th>mi</th>
<th>M'i</th>
<th>m'i</th>
<th>Pi</th>
<th>EPi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>-5.00</td>
<td>-1.67</td>
<td>-8.33</td>
<td>7.78</td>
<td>-28.33</td>
<td>18.5</td>
<td>0.00</td>
</tr>
<tr>
<td>Feb.</td>
<td>-4.72</td>
<td>-1.11</td>
<td>-8.33</td>
<td>9.44</td>
<td>-25.56</td>
<td>13.5</td>
<td>0.00</td>
</tr>
<tr>
<td>Mar.</td>
<td>-3.89</td>
<td>-0.56</td>
<td>-7.22</td>
<td>12.22</td>
<td>-23.33</td>
<td>14.5</td>
<td>0.00</td>
</tr>
<tr>
<td>Apr.</td>
<td>-0.56</td>
<td>2.78</td>
<td>-3.89</td>
<td>10.56</td>
<td>-20.56</td>
<td>10.4</td>
<td>0.00</td>
</tr>
<tr>
<td>May.</td>
<td>4.45</td>
<td>8.33</td>
<td>0.56</td>
<td>18.33</td>
<td>-10.00</td>
<td>20.6</td>
<td>55.84</td>
</tr>
<tr>
<td>Jun.</td>
<td>8.33</td>
<td>12.22</td>
<td>4.44</td>
<td>21.67</td>
<td>-1.67</td>
<td>31.0</td>
<td>90.51</td>
</tr>
<tr>
<td>Jul.</td>
<td>10.56</td>
<td>13.89</td>
<td>7.22</td>
<td>22.78</td>
<td>0.00</td>
<td>43.4</td>
<td>106.96</td>
</tr>
<tr>
<td>Aug.</td>
<td>11.39</td>
<td>14.44</td>
<td>8.33</td>
<td>27.78</td>
<td>-0.56</td>
<td>76.5</td>
<td>99.09</td>
</tr>
<tr>
<td>Sep.</td>
<td>8.62</td>
<td>11.67</td>
<td>5.56</td>
<td>20.00</td>
<td>-0.56</td>
<td>65.0</td>
<td>67.03</td>
</tr>
<tr>
<td>Oct.</td>
<td>3.34</td>
<td>6.11</td>
<td>0.56</td>
<td>13.89</td>
<td>-11.67</td>
<td>76.2</td>
<td>28.60</td>
</tr>
<tr>
<td>Nov.</td>
<td>-1.11</td>
<td>2.22</td>
<td>-4.44</td>
<td>10.00</td>
<td>-26.11</td>
<td>34.8</td>
<td>0.00</td>
</tr>
<tr>
<td>Dec.</td>
<td>-3.89</td>
<td>0.00</td>
<td>-7.78</td>
<td>9.44</td>
<td>-24.44</td>
<td>30.2</td>
<td>0.00</td>
</tr>
<tr>
<td>Year</td>
<td>2.29</td>
<td>5.69</td>
<td>-1.11</td>
<td>15.32</td>
<td>-14.40</td>
<td>435</td>
<td>448.04</td>
</tr>
</tbody>
</table>

**BIOClimatic indices and diagnosis**

- Thermicity index.........................(It): -77
- Compensated thermicity index............(Itc): -77
- Simple continentality index..............(Ic): 16.4
- Diurnality index..........................(Id): 7.8
- Annual ombrothermic index...............(Io): 6.70
- Monthly estival ombrothermic index.......(Ios1): 6.72
- Bimonthly estival ombrothermic index.....(Ios2): 5.46
- Threemonthly estival ombrothermic index..(Ios3): 6.05
- Fourmonthly estival ombrothermic index... (Ios4): 5.55
- Annual ombro-evaporation index.........(Ioe): 2.57
- Annual positive temperature...............(Tp): 467
- Annual negative temperature.............(Tn): 192
- Estival temperature......................(Ts): 306
- Positive precipitation...................(Pp): 313

<table>
<thead>
<tr>
<th>N. of Months</th>
<th>P&gt;4T</th>
<th>P:2T-4T</th>
<th>PT-2T</th>
<th>P&lt;T</th>
<th>T&lt;0</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Latitudinal Belt....: Low subtemperate
Continentality.....: Oceanic - Low Euoceanic
Bioclimatic........: BOREAL OCEANIC
Bioclimatic Belt...: LOW OROBOREAL LOW HUMID
PORT HEIDEN (USA ALASKA) 29 m

P= 435 56° 58’N 158° 39’W 7/7 y.

T= 2.3° Ic= 16.4 Tp= 467 Tn= 192
m= -8.3° M= -1.7° Itc= -77 Io= 6.7

M’= 27.8°
m’= -28.3°

BOREAL OCEANIC
LOW OROBOREAL LOW HUMID

WATER INDEX CARD PORT HEIDEN (USA ALASKA)
Altitude: 29 m. Latitude: 56° 58’N

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>PE</th>
<th>P</th>
<th>VR</th>
<th>R</th>
<th>RE</th>
<th>DF</th>
<th>SP</th>
<th>DR</th>
<th>HC (C/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>-5.0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>12</td>
<td>*</td>
</tr>
<tr>
<td>Feb.</td>
<td>-4.7</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>13</td>
<td>*</td>
</tr>
<tr>
<td>Mar.</td>
<td>-3.9</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>14</td>
<td>*</td>
</tr>
<tr>
<td>Apr.</td>
<td>-0.6</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>12</td>
<td>*</td>
</tr>
<tr>
<td>May.</td>
<td>4.4</td>
<td>56</td>
<td>21</td>
<td>-35</td>
<td>65</td>
<td>56</td>
<td>0</td>
<td>6</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>Jun.</td>
<td>8.3</td>
<td>91</td>
<td>31</td>
<td>-60</td>
<td>5</td>
<td>91</td>
<td>0</td>
<td>3</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>Jul.</td>
<td>10.6</td>
<td>107</td>
<td>43</td>
<td>-5</td>
<td>0</td>
<td>49</td>
<td>58</td>
<td>0</td>
<td>2</td>
<td>-0.5</td>
</tr>
<tr>
<td>Aug.</td>
<td>11.4</td>
<td>99</td>
<td>77</td>
<td>0</td>
<td>77</td>
<td>23</td>
<td>0</td>
<td>1</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>Sep.</td>
<td>8.6</td>
<td>67</td>
<td>65</td>
<td>0</td>
<td>65</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Oct.</td>
<td>3.3</td>
<td>29</td>
<td>76</td>
<td>48</td>
<td>48</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Nov.</td>
<td>-1.1</td>
<td>0</td>
<td>35</td>
<td>35</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dec.</td>
<td>-3.9</td>
<td>0</td>
<td>30</td>
<td>18</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>2.3</td>
<td>448</td>
<td>435</td>
<td>*</td>
<td>*</td>
<td>365</td>
<td>83</td>
<td>70</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

R = Reserve  VR = Variation of the reserve  RE = Real evapotranspiration
DR = Drainage  HC = Humidity coefficient  DF = Deficit  SP = Superavit

PORT HEIDEN (USA ALASKA)
56°58’N 158°39’W 29 m 7/7 y.

T= 2.3° Ic= 16.4  BOREAL OCEANIC
m= -8.3° Tp= 467  LOW OROBOREAL
M= -1.7° Tn= 192  LOW HUMID
M’= 27.8° Itc= -77
m’= -28.3° Io= 6.7
P= 435 mm
PE= 448 mm

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Imbibing</td>
<td>2 Sep.</td>
</tr>
<tr>
<td>Saturation</td>
<td>18 Dec.</td>
</tr>
<tr>
<td>Reserve Use</td>
<td>7 Apr.</td>
</tr>
<tr>
<td>Deficit</td>
<td>3 Jul.</td>
</tr>
</tbody>
</table>
PORT HEIDEN (USA ALASKA)
Latitude: 56°58’N Longitude: 158°39’W Altitude: 29 m

SUMMARY OF RIVAS–MARTINEZ CLASSIFICATION

Continental Index: [B2b]
+ Type ................: B. Oceanic
+ Subtype .............: 2. Euoceanic
+ Variant .............: b. Low

Thermic types: [B2.C7]
+ Latitudinal zone ....: B. Temperate
+ Latitudinal belt .....: 2. Low subtemperate
+ Thermic type ........: C. Cold
+ Thermic subtype .....: 7. Cold

Bioclimatic types: [D5.5b.7b]
+ Macrobioclimate ......: D. BOREAL
+ Bioclimate ..........: 5. OCEANIC
+ Bioclimatic variant.: 5. OROBOREAL
+ Thermic type.........: 7. HUMID
+ Thermic subtype......: b. LOW
+ Ombrothermic type ...: 7. HUMID
+ Ombrothermic subtype : b. LOW

Bioclimatic Classification: Bohc.Cbo.Hum

PORT HEIDEN (USA ALASKA)
Latitude: 56°58’N Longitude: 158°39’W Altitude: 29 m

PRECIPITATION PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th>Winter Tr1-W</th>
<th>Spring Tr2-P</th>
<th>Summer Tr3-S</th>
<th>Autumn Tr4-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>62</td>
<td>45</td>
<td>150</td>
<td>176</td>
</tr>
</tbody>
</table>

Seasonal rainfall rhythms: F > S > W > P

PORT HEIDEN (USA ALASKA)
Latitude: 56°58’N Longitude: 158°39’W Altitude: 29 m

TEMPERATURE PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th>Average warmest month [°F] ................. (Tmax): 11.4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average coldest month [°F] ......................... (Tmin): -5.0</td>
</tr>
<tr>
<td></td>
<td>Maximum temp. warmest month [°F] ............... (Tmmax): 14.4</td>
</tr>
<tr>
<td></td>
<td>Minimum temp. coldest month [°F] .............. (Tmin): -8.3</td>
</tr>
<tr>
<td></td>
<td>Absolute Max.temp. warmest month [°F′] ...... (Tamax): 27.8</td>
</tr>
<tr>
<td></td>
<td>Absolute Min.temp. coldest month [°F′] ...... (Tamin): -28.3</td>
</tr>
<tr>
<td></td>
<td>First warmest contrasted month [°F] ........ (Tcmax): 12.2 (6)</td>
</tr>
<tr>
<td></td>
<td>First coldest contrasted month [°F] .......... (Tcmin): 4.4 (6)</td>
</tr>
<tr>
<td></td>
<td>Estival temperature ......................... (Ts): 306</td>
</tr>
<tr>
<td></td>
<td>Positive temperature dryest 3 months .......... (Tpd): 0</td>
</tr>
<tr>
<td></td>
<td>Positive temperature dryest 2 months .......... (Tpd2): 0</td>
</tr>
<tr>
<td></td>
<td>Positive temperature dryest 1 month .......... (Tpd1): 0</td>
</tr>
<tr>
<td></td>
<td>Positive temperature warmest 3 months ........ (Tps): 306</td>
</tr>
<tr>
<td></td>
<td>Positive temperature warmest 2 months ....... (Tps2): 220</td>
</tr>
<tr>
<td></td>
<td>Positive temperature warmest 1 month .......... (Tps1): 114</td>
</tr>
<tr>
<td></td>
<td>Positive temperature coldest 3 months ....... (Tpw): 0</td>
</tr>
<tr>
<td></td>
<td>Positive temperature coldest 2 months ....... (Tpw2): 0</td>
</tr>
<tr>
<td></td>
<td>Positive temperature coldest 1 month ....... (Tpw1): 0</td>
</tr>
</tbody>
</table>
### SEASONAL PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmest semester...</td>
<td></td>
</tr>
<tr>
<td>Dryest semester...</td>
<td></td>
</tr>
<tr>
<td>Warmest 4 months...</td>
<td></td>
</tr>
<tr>
<td>Dryest 4 months...</td>
<td></td>
</tr>
<tr>
<td>Vegetation Activity</td>
<td></td>
</tr>
<tr>
<td>Ultragelid... [M'&lt;=0]</td>
<td></td>
</tr>
<tr>
<td>Hypergelid... [M &lt;=0]</td>
<td></td>
</tr>
<tr>
<td>Gelid....... [T &lt;=0]</td>
<td></td>
</tr>
<tr>
<td>Subgelid..... [m &lt;=0]</td>
<td></td>
</tr>
<tr>
<td>Pregelid..... [m'&lt;=0]</td>
<td></td>
</tr>
<tr>
<td>Agelid....... [m'&gt; 0]</td>
<td></td>
</tr>
<tr>
<td>HiperAgelid.. [all&gt;0]</td>
<td></td>
</tr>
</tbody>
</table>

### OMBROTHERMIC PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual aridity index</td>
<td></td>
</tr>
<tr>
<td>Mediterranean index of July</td>
<td></td>
</tr>
<tr>
<td>Mediterranean index of June, July &amp; August</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp(x10)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>206</td>
<td>310</td>
<td>434</td>
<td>765</td>
<td>650</td>
<td>762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tp</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>45</td>
<td>83</td>
<td>106</td>
<td>114</td>
<td>86</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Io (Iom)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>4.63</td>
<td>3.72</td>
<td>4.11</td>
<td>6.72</td>
<td>7.54</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp(x10)/Tp</td>
<td><em>/</em></td>
<td><em>/</em></td>
<td>1509 / 303</td>
<td><em>/</em></td>
</tr>
<tr>
<td>Io (Iot)</td>
<td>*</td>
<td>*</td>
<td>4.983</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semesters</th>
<th>December-May</th>
<th>June-November</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp(x10)/Tp</td>
<td><em>/</em></td>
<td><em>/</em></td>
</tr>
<tr>
<td>Io (Iosm)</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

### Aridity Value Index (AVI)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp [P*10]</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>206</td>
<td>310</td>
<td>434</td>
<td>765</td>
<td>650</td>
<td>762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tp [T*10]</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>45</td>
<td>83</td>
<td>106</td>
<td>114</td>
<td>86</td>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Avm [200-Iom] | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp / Tp</td>
<td><em>/</em></td>
<td><em>/</em></td>
<td>1509 / 303</td>
<td><em>/</em></td>
</tr>
<tr>
<td>Io [Pp/Tp]</td>
<td>**</td>
<td>**</td>
<td>498</td>
<td>**</td>
</tr>
</tbody>
</table>

| Avs E[Avm<200] | *** | *** | *** | *** |

There is No Yearly Aridity

AVI: \(10 \times \frac{PP}{TP-I0} = 3127/467=6.70\)
PORT HEIDEN (USA ALASKA)
Latitude: 56°58’N   Longitude: 158°39’W   Altitude: 29 m

**BIOClimatic Indices I**

<table>
<thead>
<tr>
<th>Index</th>
<th>Formula</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI of Supan (1884)</td>
<td>[Tmax-Tmin]</td>
<td>16.39</td>
</tr>
<tr>
<td>CI of Gorezinski (1920)</td>
<td>[1.7*Sp/sin(Lat)-20.4]</td>
<td>12.84</td>
</tr>
<tr>
<td>CI of Conrad (1946)</td>
<td>[1.7*Sp/sin(Lat+10)-14]</td>
<td>16.28</td>
</tr>
<tr>
<td>CI of Currey (1974)</td>
<td>[CI=Sp/(1+Lat/3)]</td>
<td>0.82</td>
</tr>
</tbody>
</table>

- Hyperoceanic (-20<CI<20)
- Oceanic (0.6<CI<1.1)

Rainfall Index of Lang (1925) [R=P/T]..............: 189.51
+ Humid (R>160)

Aridity Index of Martonne (1926) [Ia=P/(T+10)] .......: 35.35
+ Humid (60>Ia>30)

I of Emberger (1930) [Q=100*P/(Tmmax²-Tmmin²)] .......: 312.38
+ Humid (Q>90)

I of Dantin & Revenga (1940) [DR=100*T/P] ...........: 0.53
+ Humid (2>DR>0)

Aridity Index of UNEP [I=P/PE] .......................: 0.97
+ Humid (I>0.65)

Potential Erosion I of Fournier (1960) [K=Pi²/P] .......: 13.47
+ Very low (K<60)

**PORT HEIDEN (USA ALASKA)**
Latitude: 56°58’N   Longitude: 158°39’W   Altitude: 29 m

**BIOClimatic Indices II**

Bioclimatic classification of Gaussen & Bagnouls (1957)
+ Climate ......: B. Cold and temperate cold
+ Region ......: 11. Psicroaxeric (Axeric cold)
+ Thermic type: 7. Hipermicrothermic

**Thornthwaite (1948)**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P-E ratio</td>
<td>0.14</td>
<td>0.10</td>
<td>0.11</td>
<td>0.07</td>
<td>0.12</td>
<td>0.16</td>
<td>0.22</td>
<td>0.40</td>
<td>0.36</td>
<td>0.53</td>
<td>0.27</td>
</tr>
<tr>
<td>T-E ratio</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>3.75</td>
<td>4.75</td>
<td>5.13</td>
<td>3.88</td>
<td>1.50</td>
</tr>
<tr>
<td>Precipitation-effectiveness: 27.09</td>
<td>Temperature-efficiency: 21.01</td>
<td></td>
</tr>
</tbody>
</table>

Moisture Index [MI=100*(P−PE)/PE] .................: -3.00
+ CI.Subhumid dry (-33.3<MI<0)

Index of dryness [DI=100*d/PE] ......................: 18.50
+ Moderate deficit (16.7<DI<33.3)

Index of humidity [HI=100*s/PE] .....................: 15.51
+ Moderate surplus (10<HI<20)

Potential Evapotranspiration PE ......................: 448.04
+ Second microthermic (427<PE<570)

**USA ALASKA**

<table>
<thead>
<tr>
<th>°C</th>
<th>56°58′N</th>
<th>158°39′W</th>
<th>29 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-7</td>
<td>+2.3 °C</td>
<td>434.6 mm</td>
<td></td>
</tr>
</tbody>
</table>

-400 -300 -200 -100 0 100 200 300 400
0 10 20 30 40 50 60 70 80 90 100

-10 -0 10 20 30 40 50 60 70 80 90

-10 -5 0 5 10 15 20 25 30 35 40

-10 -5 0 5 10 15 20 25 30 35 40