Phytosociological Research Center
www.globalbioclimatics.org
Worldwide Bioclimatic Classification System
Prof. Dr. Salvador Rivas-Martinez
(Adapted to Synoptical Table 30/08/2017)

TOME (RUS LATVIJSKAYA) Altitude: 34 m.
Latitude: 56°43’N Longitude: 24°37’E
Temperature observation period.: 1932−1942 (11)
Rainfall observation period.: 1933−1942 (10)

<table>
<thead>
<tr>
<th>Month</th>
<th>Ti</th>
<th>Mi</th>
<th>mi</th>
<th>M’i</th>
<th>m’i</th>
<th>Pi</th>
<th>EPi (C/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>-6.20</td>
<td>-3.40</td>
<td>-9.60</td>
<td>3.00</td>
<td>-36.00</td>
<td>47.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Feb.</td>
<td>-6.00</td>
<td>-2.10</td>
<td>-9.60</td>
<td>4.00</td>
<td>-37.00</td>
<td>41.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Mar.</td>
<td>-2.20</td>
<td>1.80</td>
<td>-5.60</td>
<td>10.00</td>
<td>-30.00</td>
<td>35.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Apr.</td>
<td>4.40</td>
<td>9.70</td>
<td>-1.10</td>
<td>19.00</td>
<td>-15.00</td>
<td>39.0</td>
<td>30.71</td>
</tr>
<tr>
<td>May.</td>
<td>11.30</td>
<td>17.20</td>
<td>4.10</td>
<td>26.00</td>
<td>-9.00</td>
<td>55.0</td>
<td>87.34</td>
</tr>
<tr>
<td>Jun.</td>
<td>14.90</td>
<td>20.70</td>
<td>8.10</td>
<td>28.00</td>
<td>-4.00</td>
<td>73.0</td>
<td>117.43</td>
</tr>
<tr>
<td>Jul.</td>
<td>17.30</td>
<td>22.70</td>
<td>11.20</td>
<td>30.00</td>
<td>2.00</td>
<td>91.0</td>
<td>134.74</td>
</tr>
<tr>
<td>Aug.</td>
<td>15.60</td>
<td>21.10</td>
<td>10.40</td>
<td>28.00</td>
<td>1.00</td>
<td>83.0</td>
<td>107.60</td>
</tr>
<tr>
<td>Sep.</td>
<td>11.00</td>
<td>16.40</td>
<td>6.20</td>
<td>23.00</td>
<td>-7.00</td>
<td>65.0</td>
<td>64.20</td>
</tr>
<tr>
<td>Oct.</td>
<td>5.60</td>
<td>9.20</td>
<td>2.40</td>
<td>16.00</td>
<td>-13.00</td>
<td>60.0</td>
<td>28.68</td>
</tr>
<tr>
<td>Nov.</td>
<td>0.80</td>
<td>3.10</td>
<td>-1.40</td>
<td>9.00</td>
<td>-24.00</td>
<td>54.0</td>
<td>3.65</td>
</tr>
<tr>
<td>Dec.</td>
<td>-3.80</td>
<td>-1.20</td>
<td>-6.20</td>
<td>5.00</td>
<td>-29.00</td>
<td>53.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Year</td>
<td>5.22</td>
<td>9.60</td>
<td>0.74</td>
<td>16.75</td>
<td>-16.75</td>
<td>696</td>
<td>574.36</td>
</tr>
</tbody>
</table>

**BIOCLIMATIC INDICES AND DIAGNOSIS**

- Thermicity index..............................(It): -78
- Compensated thermicity index.................(Itc): -25
- Simple continentality index...................(Ic): 23.5
- Diurnality index.............................(Id): 13.1
- Annual ombrothermic index....................(Io): 6.43
- Bimonthly estival ombrothermic index........(Ios1): 4.90
- Threemonthly estival ombrothermic index.....(Ios2): 5.29
- Fourmonthly estival ombrothermic index......(Ios4): 5.11
- Annual ombro-evaporation index..............(Ioe): 1.59
- Annual positive temperature...................(Tp): 809
- Annual negative temperature..................(Tn): 182
- Estival temperature.........................(Ts): 478
- Positive precipitation.......................(Pp): 520

<table>
<thead>
<tr>
<th>N. of Months</th>
<th>P&gt;4T</th>
<th>P:2T-4T</th>
<th>PT-2T</th>
<th>P&lt;T</th>
<th>T&lt;0</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Latitudinal Belt....: Low subtemperate
Continentality......: Continental - Low Subcontinental
Bioclimate........: TEMPERATE CONTINENTAL
Bioclimatic Belt...: UPPER SUPRATEMPERATE (HEMIBOREAL) LOW HUMID
TOME (RUS LATVIJSKAYA) 34 m

P = 696 m
T = 5.2°
m = -9.6°

T= 56° 43’N
Tn= 182°

m= -9.6°
M= -3.4°

M'= 30.0°
m'= -37.0°

TEMPERATE CONTINENTAL
UPPER SUPRATEMPERATE (HEMIBOREAL) LOW HUMID

WATER INDEX CARD TOME (RUS LATVIJSKAYA)
Altitude: 34 m. Latitude: 56° 43’N

<table>
<thead>
<tr>
<th>(C/mm)</th>
<th>T</th>
<th>PE</th>
<th>P</th>
<th>VR</th>
<th>R</th>
<th>RE</th>
<th>DF</th>
<th>SP</th>
<th>DR</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>-6.2</td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>32</td>
<td>*</td>
</tr>
<tr>
<td>Feb.</td>
<td>-6.0</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>37</td>
<td>*</td>
</tr>
<tr>
<td>Mar.</td>
<td>-2.2</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>36</td>
<td>*</td>
</tr>
<tr>
<td>Apr.</td>
<td>4.4</td>
<td>31</td>
<td>39</td>
<td>0</td>
<td>100</td>
<td>31</td>
<td>0</td>
<td>8</td>
<td>22</td>
<td>0.2</td>
</tr>
<tr>
<td>May</td>
<td>11.3</td>
<td>87</td>
<td>55</td>
<td>-32</td>
<td>68</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>-0.3</td>
</tr>
<tr>
<td>Jun.</td>
<td>14.9</td>
<td>117</td>
<td>73</td>
<td>-44</td>
<td>23</td>
<td>117</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>-0.3</td>
</tr>
<tr>
<td>Jul.</td>
<td>17.3</td>
<td>135</td>
<td>91</td>
<td>-23</td>
<td>0</td>
<td>114</td>
<td>21</td>
<td>0</td>
<td>3</td>
<td>-0.3</td>
</tr>
<tr>
<td>Aug.</td>
<td>15.6</td>
<td>108</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>83</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>-0.2</td>
</tr>
<tr>
<td>Sep.</td>
<td>11.0</td>
<td>64</td>
<td>65</td>
<td>1</td>
<td>1</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>Oct.</td>
<td>5.6</td>
<td>29</td>
<td>60</td>
<td>31</td>
<td>32</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>Nov.</td>
<td>0.8</td>
<td>4</td>
<td>54</td>
<td>50</td>
<td>82</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.7</td>
</tr>
<tr>
<td>Dec.</td>
<td>-3.8</td>
<td>0</td>
<td>53</td>
<td>18</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>18</td>
</tr>
<tr>
<td>Year</td>
<td>5.2</td>
<td>574</td>
<td>696</td>
<td>*</td>
<td>*</td>
<td>529</td>
<td>45</td>
<td>167</td>
<td>167</td>
<td>*</td>
</tr>
</tbody>
</table>

R = Reserve  VR = Variation of the reserve  RE = Real evapotranspiration
DR = Drainage  HC = Humidity coefficient  DF = Deficit  SP = Superavit

TOME (RUS LATVIJSKAYA)

56°43’N  24°37’E  34 m  11/10 y.

T= 5.2°
m= -9.6°

T= 23.5°

m= -3.4°
m= -37.0°

P= 696 mm

PE= 574 mm

Imbibing  30 Aug.
Saturation  10 Dec.
Reserve Use  7 Apr.
Deficit  16 Jul.
TOME (RUS LATVIJSKAYA)

Latitude: 56°43’N   Longitude: 24°37’E   Altitude: 34 m

SUMMARY OF RIVAS-MARTINEZ CLASSIFICATION

Continentality Index [C2a]
+ Type ................: C. Continental
+ Subtype .............: 2. Subcontinental
+ Variant .............: a. Low

Thermic types [B2.C6]
+ Latitudinal zone ....: B. Temperate
+ Latitudinal belt ....: 2. Low subtemperate
+ Thermic type .......: C. Cold
+ Thermic subtype .....: 6. Cool

Bioclimatic types [C2.4a.7b]
+ Macrobioclimate ......: C. TEMPERATE
+ Bioclimate ...........: 2. CONTINENTAL
+ Bioclimatic variant :.
+ Thermic type..........: 4. SUPRATEMPERATE (HEMIBOREAL)
+ Thermic subtype......: a. UPPER
+ Ombrothermic type ...: 7. HUMID
+ Ombrothermic subtype : b. LOW

Bioclimatic Classification ....................: Teoc.Ste.Hum

TOME (RUS LATVIJSKAYA)

Latitude: 56°43’N   Longitude: 24°37’E   Altitude: 34 m

PRECIPITATION PARAMETERS

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Winter Tr1-W</th>
<th>Spring Tr2-P</th>
<th>Summer Tr3-S</th>
<th>Autumn Tr4-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>141</td>
<td>129</td>
<td>247</td>
<td>179</td>
</tr>
</tbody>
</table>

Seasonal rainfall rhythms:  S > F > W > P

TOME (RUS LATVIJSKAYA)

Latitude: 56°43’N   Longitude: 24°37’E   Altitude: 34 m

TEMPERATURE PARAMETERS

Average warmest month [T] ......................(Tmax): 17.3
Average coldest month [T] ......................(Tmin): -6.2
Minimum temp. warmest month [M]..............(Tmmax): 22.7
Minimum temp. coldest month [m]..............(Tmnin): -9.6
Absolute Max.temp. warmest month [M’].......(Tamax): 30.0
Absolute Min.temp. coldest month [m’].......(Tamin): -37.0
First warmest contrasted month [M] ..........(Tcmax): 17.2 (5)
First coldest contrasted month [m] ..........(Tcmin): 4.1 (5)
Estival temperature .........................(Ts): 478
Positive temperature dryest 3 months.......(Tpd): 44
Positive temperature dryest 2 months.......(Tpd2): 44
Positive temperature dryest 1 month........(Tpd1): 0
Positive temperature warmest 3 months......(Tps): 478
Positive temperature warmest 2 months......(Tps2): 329
Positive temperature warmest 1 month.......(Tps1): 173
Positive temperature coldest 3 months......(Tpw): 0
Positive temperature coldest 2 months......(Tpw2): 0
Positive temperature coldest 1 month.......(Tpwl): 0
### SEASONAL PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmest semester... (Sms)</td>
<td></td>
</tr>
<tr>
<td>Dryest semester... (Smd)</td>
<td></td>
</tr>
<tr>
<td>Warmest 4 months... (Cm1)</td>
<td></td>
</tr>
<tr>
<td>Dryest 4 months... (Cmd)</td>
<td></td>
</tr>
<tr>
<td>Vegetation Activity (Pav)</td>
<td></td>
</tr>
<tr>
<td>Ultragelid... [M'&lt;=0] (Pf)</td>
<td></td>
</tr>
<tr>
<td>Hypergelid... [M &lt;=0] (Pf)</td>
<td></td>
</tr>
<tr>
<td>Gelid.......... [T &lt;=0] (Pf)</td>
<td></td>
</tr>
<tr>
<td>Subgelid..... [m &lt;=0] (Pf)</td>
<td></td>
</tr>
<tr>
<td>Pregelid..... [m'&lt;=0] (Pf)</td>
<td></td>
</tr>
<tr>
<td>Agelid....... [m'&gt; 0] (Pf)</td>
<td></td>
</tr>
<tr>
<td>HiperAgelid.. [all&gt;0] (Pf)</td>
<td></td>
</tr>
</tbody>
</table>

### OMBROTHERMIC PARAMETERS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp (x10)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>390</td>
<td>550</td>
<td>730</td>
<td>910</td>
<td>830</td>
<td>650</td>
<td>600</td>
<td>540</td>
</tr>
<tr>
<td>Tp</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>44</td>
<td>113</td>
<td>149</td>
<td>173</td>
<td>156</td>
<td>110</td>
<td>56</td>
<td>8</td>
</tr>
<tr>
<td>Io (Iom)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>8.86</td>
<td>4.87</td>
<td>4.90</td>
<td>5.26</td>
<td>5.32</td>
<td>5.91</td>
<td>10.7</td>
<td>67.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp (x10)/Tp</td>
<td><em>/</em></td>
<td><em>/</em></td>
<td>2470 / 478</td>
<td>1790 / 174</td>
</tr>
<tr>
<td>Io (Iot)</td>
<td>*</td>
<td>*</td>
<td>5.167</td>
<td>10.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semesters</th>
<th>December-May</th>
<th>June-November</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp (x10)/Tp</td>
<td><em>/</em></td>
<td>4260 / 652</td>
</tr>
<tr>
<td>Io (Iosm)</td>
<td>*</td>
<td>6.534</td>
</tr>
</tbody>
</table>

### Aridity Value Index (AVI)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp [P*10]</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>390</td>
<td>550</td>
<td>730</td>
<td>910</td>
<td>830</td>
<td>650</td>
<td>600</td>
<td>540</td>
</tr>
<tr>
<td>Tp [T*10]</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>44</td>
<td>113</td>
<td>149</td>
<td>173</td>
<td>156</td>
<td>110</td>
<td>56</td>
<td>8</td>
</tr>
<tr>
<td>Iom [Pp/Tp]</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>886</td>
<td>487</td>
<td>490</td>
<td>526</td>
<td>532</td>
<td>591</td>
<td>591</td>
<td></td>
</tr>
<tr>
<td>Avm [200-Iom]</td>
<td>***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp / Tp</td>
<td>* / *</td>
<td>* / *</td>
<td>2470 / 478</td>
<td>1790 / 174</td>
</tr>
<tr>
<td>Io (Iot)</td>
<td>**</td>
<td>**</td>
<td>517</td>
<td>1029</td>
</tr>
<tr>
<td>Avs E[Avm&lt;200]</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

**There is No Yearly Aridity**
**BIOCLIMATIC INDICES I**

Latitude: 56°43’N   Longitude: 24°37’E   Altitude: 34 m

- CI of Supan (1884) \[T_{\text{max}}-T_{\text{min}}\] \[\text{(Sp)}\]: 23.50
- CI of Gorezinski (1920) \[1.7*\text{Sp}/\sin(\text{Lat})-20.4\]: 27.39
- CI of Conrad (1946) \[1.7*\text{Sp}/\sin(\text{Lat}+10)-14\]: 29.49
  - Oceanic \(20<\text{CI}<40\)
  - Subcontinental \(1.1<\text{CI}<1.7\)
- Rainfall Index of Lang (1925) \[R=\text{P}/\text{T}\]: 133.21
  - Temperate humid \(160>R>100\)
- Aridity Index of Martonne (1926) \[I_a=\text{P}/(\text{T}+10)\]: 45.71
  - Humid \(60>I_a>30\)
- I of Emberger (1930) \[Q=100*\text{P}/(\text{T}_{\text{max}}^2-\text{T}_{\text{min}}^2)\]: 164.49
  - Humid \(Q>90\)
- I of Dantin & Revenga (1940) \[\text{DR}=100*\text{P}/\text{T}\]: 0.75
  - Humid \(2>\text{DR}>0\)
- Aridity Index of UNEP \[I=\text{P}/\text{PE}\]: 1.21
  - Humid \(I>0.65\)
- Potential Erosion I of Fournier (1960) \[K=\text{Pi}^2/\text{P}\]: 11.90
  - Very low \(K<60\)

**BIOCLIMATIC INDICES II**

Bioclimatic classification of Gaussen & Bagnouls (1957)
- Climate ....: B. Cold and temperate cold
- Region ......: 11. Psicroaxeric (Axeric cold)
- Thermic type: 6. Microthermic

**Thornthwaite (1948)**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P-E ratio</td>
<td>0.40</td>
<td>0.34</td>
<td>0.29</td>
<td>0.24</td>
<td>0.27</td>
<td>0.34</td>
<td>0.40</td>
<td>0.38</td>
<td>0.33</td>
<td>0.37</td>
<td>0.40</td>
<td>0.45</td>
</tr>
<tr>
<td>T-E ratio</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.98</td>
<td>5.09</td>
<td>6.70</td>
<td>7.78</td>
<td>7.02</td>
<td>4.95</td>
<td>2.52</td>
<td>0.36</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Moisture Index \[\text{MI}=100*\text{(P-PE)}/\text{PE}\]: 21.18
  - Humid low-humid \(20<\text{MI}<40\)
- Index of dryness \[\text{DI}=100*\text{d}/\text{PE}\]: 7.85
  - No deficit \(0<\text{DI}<16.7\)
- Index of humidity \[\text{HI}=100*\text{s}/\text{PE}\]: 29.02
  - Strong surplus \(20<\text{HI}\)
- Potential Evapotranspiration \[\text{PE}\]: 574.36
  - First mesothermic \(570<\text{PE}<712\)

**RUS LATVIJSKAYA**

<table>
<thead>
<tr>
<th>°C</th>
<th>56°43’N / 24°37’E / 34 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.7</td>
<td>TOME</td>
</tr>
<tr>
<td>-9.6</td>
<td></td>
</tr>
</tbody>
</table>

**TOME** (RUS LATVIJSKAYA)

Latitude: 56°43’N   Longitude: 24°37’E   Altitude: 34 m