Phytosociological Research Center

www.globalbioclimatics.org

Worldwide Bioclimatic Classification System

Prof. Dr. Salvador Rivas-Martinez

(Adapted to Synoptical Table 30/08/2017)

STAVANGER SOLA (NORWAY) Altitude: 9 m.
Latitude: 58°52’N Longitude: 5°38’E
Temperature observation period.: 1984−1994 (11)
Rainfall observation period....: 1927−1994 (68)

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Mi</th>
<th>mi</th>
<th>M'i</th>
<th>m'i</th>
<th>Pi</th>
<th>Epi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>1.39</td>
<td>3.33</td>
<td>-0.56</td>
<td>8.89</td>
<td>-12.22</td>
<td>104.1</td>
<td>4.87</td>
</tr>
<tr>
<td>Feb.</td>
<td>1.39</td>
<td>3.33</td>
<td>-0.56</td>
<td>10.00</td>
<td>-11.11</td>
<td>73.7</td>
<td>5.85</td>
</tr>
<tr>
<td>Mar.</td>
<td>3.06</td>
<td>5.56</td>
<td>0.56</td>
<td>18.33</td>
<td>-11.11</td>
<td>61.0</td>
<td>17.58</td>
</tr>
<tr>
<td>Apr.</td>
<td>6.11</td>
<td>8.89</td>
<td>3.33</td>
<td>21.67</td>
<td>-5.00</td>
<td>61.0</td>
<td>40.31</td>
</tr>
<tr>
<td>May.</td>
<td>10.56</td>
<td>14.44</td>
<td>6.67</td>
<td>25.56</td>
<td>0.00</td>
<td>48.3</td>
<td>81.93</td>
</tr>
<tr>
<td>Jun.</td>
<td>12.77</td>
<td>16.11</td>
<td>9.44</td>
<td>29.44</td>
<td>1.11</td>
<td>63.5</td>
<td>102.91</td>
</tr>
<tr>
<td>Jul.</td>
<td>15.27</td>
<td>18.33</td>
<td>12.22</td>
<td>28.89</td>
<td>5.00</td>
<td>81.3</td>
<td>121.24</td>
</tr>
<tr>
<td>Aug.</td>
<td>15.27</td>
<td>18.33</td>
<td>12.22</td>
<td>28.89</td>
<td>3.89</td>
<td>116.8</td>
<td>106.08</td>
</tr>
<tr>
<td>Sep.</td>
<td>12.50</td>
<td>15.00</td>
<td>10.00</td>
<td>24.44</td>
<td>0.00</td>
<td>119.4</td>
<td>71.18</td>
</tr>
<tr>
<td>Oct.</td>
<td>8.89</td>
<td>11.11</td>
<td>6.67</td>
<td>17.78</td>
<td>-2.78</td>
<td>129.5</td>
<td>41.91</td>
</tr>
<tr>
<td>Nov.</td>
<td>5.56</td>
<td>7.22</td>
<td>3.89</td>
<td>13.89</td>
<td>-11.11</td>
<td>116.8</td>
<td>19.79</td>
</tr>
<tr>
<td>Dec.</td>
<td>3.34</td>
<td>5.00</td>
<td>1.67</td>
<td>11.11</td>
<td>-11.11</td>
<td>109.2</td>
<td>10.49</td>
</tr>
<tr>
<td>Year</td>
<td>8.01</td>
<td>10.55</td>
<td>5.46</td>
<td>19.91</td>
<td>-4.54</td>
<td>1085</td>
<td>624.14</td>
</tr>
</tbody>
</table>

BIOCLIMATIC INDICES AND DIAGNOSIS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermicity index............(It):</td>
<td>108</td>
</tr>
<tr>
<td>Compensated thermicity index........(Itc):</td>
<td>108</td>
</tr>
<tr>
<td>Simple continentality index........(Ic):</td>
<td>13.9</td>
</tr>
<tr>
<td>Diurnality index.............(Id):</td>
<td>7.8</td>
</tr>
<tr>
<td>Annual ombrothermic index........(Io):</td>
<td>11.28</td>
</tr>
<tr>
<td>Monthly estival ombrothermic index........(Ios1):</td>
<td>4.97</td>
</tr>
<tr>
<td>Bimonthly estival ombrothermic index........(Ios2):</td>
<td>6.49</td>
</tr>
<tr>
<td>Threemonthly estival ombrothermic index........(Ios3):</td>
<td>6.04</td>
</tr>
<tr>
<td>Fourmonthly estival ombrothermic index........(Ios4):</td>
<td>5.75</td>
</tr>
<tr>
<td>Annual ombro-evaporation index........(Ioe):</td>
<td>1.06</td>
</tr>
<tr>
<td>Annual positive temperature........(Tp):</td>
<td>961</td>
</tr>
<tr>
<td>Annual negative temperature........(Tn):</td>
<td>0</td>
</tr>
<tr>
<td>Estival temperature............(Ts):</td>
<td>433</td>
</tr>
<tr>
<td>Positive precipitation...........(Pp):</td>
<td>1085</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N. of Months</th>
<th>P>4T</th>
<th>P:2T-4T</th>
<th>PT-2T</th>
<th>P<T</th>
<th>T<0</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Latitudinal Belt....: Low subtemperate
Continentality......: Oceanic − Low Semihyperoceanic
Bioclimatic.........: TEMPERATE OCEANIC
Bioclimatic Belt....: UPPER SUPRATEMPERATE UPPER HUMID
STAVANGER SOLA (NORWAY)

Altitude: 9 m. Latitude: 58° 52’N

<table>
<thead>
<tr>
<th>(C/mm)</th>
<th>T</th>
<th>PE</th>
<th>P</th>
<th>VR</th>
<th>R</th>
<th>RE</th>
<th>DF</th>
<th>SP</th>
<th>DR</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>1.4</td>
<td>5</td>
<td>104</td>
<td>0</td>
<td>100</td>
<td>5</td>
<td>0</td>
<td>99</td>
<td>89</td>
<td>20.3</td>
</tr>
<tr>
<td>Feb.</td>
<td>1.4</td>
<td>6</td>
<td>74</td>
<td>0</td>
<td>100</td>
<td>6</td>
<td>0</td>
<td>68</td>
<td>79</td>
<td>11.6</td>
</tr>
<tr>
<td>Mar.</td>
<td>3.1</td>
<td>18</td>
<td>61</td>
<td>0</td>
<td>100</td>
<td>18</td>
<td>0</td>
<td>43</td>
<td>61</td>
<td>2.4</td>
</tr>
<tr>
<td>Apr.</td>
<td>6.1</td>
<td>40</td>
<td>61</td>
<td>0</td>
<td>100</td>
<td>40</td>
<td>0</td>
<td>21</td>
<td>41</td>
<td>0.5</td>
</tr>
<tr>
<td>May.</td>
<td>10.6</td>
<td>82</td>
<td>48</td>
<td>-34</td>
<td>66</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>-0.4</td>
</tr>
<tr>
<td>Jun.</td>
<td>12.8</td>
<td>103</td>
<td>64</td>
<td>-39</td>
<td>27</td>
<td>103</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>-0.3</td>
</tr>
<tr>
<td>Jul.</td>
<td>15.3</td>
<td>121</td>
<td>81</td>
<td>-27</td>
<td>0</td>
<td>108</td>
<td>13</td>
<td>0</td>
<td>5</td>
<td>-0.3</td>
</tr>
<tr>
<td>Aug.</td>
<td>15.3</td>
<td>106</td>
<td>117</td>
<td>11</td>
<td>11</td>
<td>106</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>Sep.</td>
<td>12.5</td>
<td>71</td>
<td>119</td>
<td>48</td>
<td>59</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>Oct.</td>
<td>8.9</td>
<td>42</td>
<td>130</td>
<td>41</td>
<td>100</td>
<td>42</td>
<td>0</td>
<td>47</td>
<td>24</td>
<td>2.0</td>
</tr>
<tr>
<td>Nov.</td>
<td>5.6</td>
<td>20</td>
<td>117</td>
<td>0</td>
<td>100</td>
<td>20</td>
<td>0</td>
<td>97</td>
<td>60</td>
<td>4.9</td>
</tr>
<tr>
<td>Dec.</td>
<td>3.3</td>
<td>10</td>
<td>109</td>
<td>0</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>99</td>
<td>80</td>
<td>9.4</td>
</tr>
</tbody>
</table>
| Year | 8.0 | 624| 1085| * | * | 611| 13 | 473| 473| *

R = Reserve VR = Variation of the reserve RE = Real evapotranspiration
DR = Drainage HC = Humidity coefficient DF = Deficit SP = Superavit

STAVANGER SOLA (NORWAY)

58°52’N 5°38’E 9 m 11/68 y.

TEMPERATE OCEANIC

UPPER SUPRATEMPERATE UPPER HUMID

Imbibing 24 Jul.
Saturation 15 Oct.
Reserve Use 12 Apr.
Deficit 21 Jul.
STAVANGER SOLA (NORWAY)
Latitude: 58°52’N Longitude: 5°38’E Altitude: 9 m

SUMMARY OF RIVAS-MARTINEZ CLASSIFICATION

Continentality Index [B1b]
+ Type: B. Oceanic
+ Subtype: 1. Semihyperoceanic
+ Variant: b. Low

Thermic types
+ Latitudinal zone: B. Temperate
+ Latitudinal belt: 2. Low subtemperate
+ Thermic type: B. Temperate
+ Thermic subtype: 5. Subtemperate

Bioclimatic types [C3.4a.7a]
+ Macrobioclimate: C. TEMPERATE
+ Bioclimate: 3. OCEANIC
+ Bioclimatic variant .:
+ Thermic type.........: 4. SUPRATEMPERATE
+ Thermic subtype......: a. UPPER
+ Ombrothermic type ...: 7. HUMID
+ Ombrothermic subtype : a. UPPER

Bioclimatic Classification: Teco.Ste.Hum

STAVANGER SOLA (NORWAY)
Latitude: 58°52’N Longitude: 5°38’E Altitude: 9 m

PRECIPITATION PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th>Winter Tr1-W</th>
<th>Spring Tr2-P</th>
<th>Summer Tr3-S</th>
<th>Autumn Tr4-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>287</td>
<td>170</td>
<td>261</td>
<td>365</td>
</tr>
</tbody>
</table>

Seasonal rainfall rhythms: F > W > S > P

STAVANGER SOLA (NORWAY)
Latitude: 58°52’N Longitude: 5°38’E Altitude: 9 m

TEMPERATURE PARAMETERS

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average warmest month [T].......... (Tmax):</td>
<td>15.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average coldest month [T]......... (Tmin):</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum temp. warmest month [M]......... (Tmmax):</td>
<td>18.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Max.temp. warmest month [M’]....... (Tamax):</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Min.temp. coldest month [m’]....... (Tamin):</td>
<td>-12.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First warmest contrasted month [M]....... (Tcmax):</td>
<td>14.4 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First coldest contrasted month [m]....... (Tcmin):</td>
<td>6.7 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estival temperature.................. (Ts):</td>
<td>433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive temperature dryest 3 months........... (Tpd):</td>
<td>197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive temperature dryest 2 months........... (Tpd2):</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive temperature dryest 1 month........... (Tpd1):</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive temperature warmest 3 months........... (Tps):</td>
<td>433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive temperature warmest 2 months.......... (Tps2):</td>
<td>305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive temperature warmest 1 month.......... (Tps1):</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive temperature coldest 3 months......... (Tpw):</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive temperature coldest 2 months......... (Tpw2):</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive temperature coldest 1 month......... (Tpw1):</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEASONAL PARAMETERS

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmest semester...</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Dryest semester...</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Warmest 4 months...</td>
<td></td>
</tr>
<tr>
<td>Dryest 4 months...</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation Activity</td>
<td></td>
</tr>
<tr>
<td>Ultragelid...[M‘<=0]</td>
<td></td>
</tr>
<tr>
<td>Hypergelid...[M <=0]</td>
<td></td>
</tr>
<tr>
<td>Gelid........[T <=0]</td>
<td></td>
</tr>
<tr>
<td>Subgelid.....[m <=0]</td>
<td></td>
</tr>
<tr>
<td>Pregelid.....[m’<=0]</td>
<td></td>
</tr>
<tr>
<td>Agelid....[m’> 0]</td>
<td></td>
</tr>
<tr>
<td>HiperAgelid...[all>0]</td>
<td></td>
</tr>
</tbody>
</table>

OMBROTHERMIC PARAMETERS

Annual aridity index.[PE/P].................(Iar): 0.58

Mediterranean index of July.[PE/P]..........(Im1): 1.49

Mediterranean index of July & August........(Im2): 1.15

Mediterranean index of June, July & August....(Im3): 1.26

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp(x10)</td>
<td>1092</td>
<td>1041</td>
<td>737</td>
<td>610</td>
<td>610</td>
<td>483</td>
<td>635</td>
<td>813</td>
<td>1168</td>
<td>1194</td>
<td>1295</td>
<td>1168</td>
</tr>
<tr>
<td>Tp</td>
<td>33</td>
<td>14</td>
<td>14</td>
<td>31</td>
<td>61</td>
<td>106</td>
<td>128</td>
<td>153</td>
<td>153</td>
<td>125</td>
<td>89</td>
<td>56</td>
</tr>
<tr>
<td>Io (Iom)</td>
<td>32.7</td>
<td>74.9</td>
<td>53.0</td>
<td>19.9</td>
<td>9.98</td>
<td>4.57</td>
<td>4.97</td>
<td>5.32</td>
<td>7.65</td>
<td>9.55</td>
<td>14.4</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Seasons

- Winter
- Spring
- Summer
- Autumn

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp(x10)</td>
<td>1092</td>
<td>1041</td>
<td>737</td>
<td>610</td>
<td>610</td>
<td>483</td>
<td>635</td>
<td>813</td>
<td>1168</td>
<td>1194</td>
<td>1295</td>
<td>1168</td>
</tr>
<tr>
<td>Tp</td>
<td>33</td>
<td>14</td>
<td>14</td>
<td>31</td>
<td>61</td>
<td>106</td>
<td>128</td>
<td>153</td>
<td>153</td>
<td>125</td>
<td>89</td>
<td>56</td>
</tr>
<tr>
<td>Io (Iot)</td>
<td>46.90</td>
<td>8.632</td>
<td>6.040</td>
<td>13.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semesters

- December-May
- June-November

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp(x10)</td>
<td>1092</td>
<td>1041</td>
<td>737</td>
<td>610</td>
<td>610</td>
<td>483</td>
<td>635</td>
<td>813</td>
<td>1168</td>
<td>1194</td>
<td>1295</td>
<td>1168</td>
</tr>
<tr>
<td>Tp</td>
<td>33</td>
<td>14</td>
<td>14</td>
<td>31</td>
<td>61</td>
<td>106</td>
<td>128</td>
<td>153</td>
<td>153</td>
<td>125</td>
<td>89</td>
<td>56</td>
</tr>
<tr>
<td>Io (Iosm)</td>
<td>17.69</td>
<td>8.928</td>
<td></td>
</tr>
</tbody>
</table>

RAINFALL PARAMETERS

Aridity Value Index (AVI)

- [10xPP/TP=I0]: 10846/961=11.28 There Is No Yearly Aridity

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp [P‘*10]</td>
<td>1092</td>
<td>1041</td>
<td>737</td>
<td>610</td>
<td>610</td>
<td>483</td>
<td>635</td>
<td>813</td>
<td>1168</td>
<td>1194</td>
<td>1295</td>
<td>1168</td>
</tr>
<tr>
<td>Tp [T‘*10]</td>
<td>33</td>
<td>14</td>
<td>14</td>
<td>31</td>
<td>61</td>
<td>106</td>
<td>128</td>
<td>153</td>
<td>153</td>
<td>125</td>
<td>89</td>
<td>56</td>
</tr>
<tr>
<td>Io (Iom)</td>
<td>$$$</td>
<td>$$$</td>
<td>$$$</td>
<td>$$$</td>
<td>998</td>
<td>457</td>
<td>497</td>
<td>532</td>
<td>765</td>
<td>955</td>
<td>$$$</td>
<td>$$$</td>
</tr>
<tr>
<td>Avm [200-Iom]</td>
<td>***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp / Tp</td>
<td>2870 / 61</td>
<td>1703 / 197</td>
<td>2616 / 433</td>
<td>3657 / 270</td>
</tr>
<tr>
<td>Io (Iot)</td>
<td>4573 / 259</td>
<td>6273 / 703</td>
<td>813 / 339</td>
<td>1465 / 125</td>
</tr>
<tr>
<td>Aridity E [Av<200]</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>
STAVANGER SOLA (NORWAY)

Latitude: 58°52'N
Longitude: 5°38'E
Altitude: 9 m

BIOCLIMATIC INDICES I

- CI of Supan (1884) \[\text{Tmax}-\text{Tmin}\] \(\text{(Sp)}\) \(= 13.88\)
- CI of Gorezinski (1920) \[1.7*\text{Sp}/\sin(\text{Lat})-20.4\] \(= 7.17\)
 + Hyperoceanic \((-20<\text{CI}<20)\)
- CI of Conrad (1946) \[1.7*\text{Sp}/\sin(\text{Lat}+10)-14\] \(= 11.30\)
 + Oceanic \(0.6<\text{CI}<1.1\)
- CI of Currey (1974) \[\text{CI}=\text{Sp}/(1+\text{Lat}/3)\] \(= 0.67\)
 + Oceanic \(0.6<\text{CI}<1.1\)
- Rainfall Index of Lang (1925) \[R=\text{P}/\text{T}\] \(= 135.42\)
 + Temperate humid \(160>R>100\)
- Aridity Index of Martonne (1926) \[\text{Ia}=\text{P}/(\text{T}+10)\] \(= 60.22\)
 + Perhumid \(\text{Ia}>50\)
- I of Emberger (1930) \[\text{Q}=100*\text{P}/(\text{Tmax}^2-\text{Tmin}^2)\] \(= 323.11\)
 + Humid \(\text{Q}>90\)
- I of Dantin & Revenga (1940) \[\text{DR}=100*\text{T}/\text{P}\] \(= 0.74\)
 + Humid \(2<\text{DR}<10\)
- Aridity Index of UNEP \[\text{I}=\text{P}/\text{PE}\] \(= 1.74\)
 + Humid \(\text{I}>0.65\)
- Potential Erosion I of Fournier (1960) \[\text{K}=\text{P}^2/\text{P}\] \(= 15.46\)
 + Very low \(\text{K}<10\)

BIOCLIMATIC INDICES II

Bioclimatic classification of Gaussen & Bagnouls (1957)
- Climate ...: A. Warm and temperate warm
- Region ...: 7. Mesoaxeric (Axeric temperate)
- Thermic type: 5. Meso-microthermic

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P-E ratio</td>
<td>0.81</td>
<td>0.55</td>
<td>0.42</td>
<td>0.37</td>
<td>0.24</td>
<td>0.31</td>
<td>0.38</td>
<td>0.56</td>
<td>0.63</td>
<td>0.77</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>T-E ratio</td>
<td>0.63</td>
<td>0.63</td>
<td>1.38</td>
<td>2.75</td>
<td>4.75</td>
<td>5.75</td>
<td>6.87</td>
<td>6.87</td>
<td>5.63</td>
<td>4.00</td>
<td>2.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Precipitation-effectiveness: 66.06</td>
<td>Temperature-efficiency ...: 43.25</td>
<td></td>
</tr>
</tbody>
</table>

- Moisture Index \[\text{MI}=100*(\text{P}-\text{PE})/\text{PE}\] \(= 73.77\)
 + B3. Humid high-humid \((60<\text{MI}<80)\)
- Index of dryness \[\text{DI}=100*\text{d}/\text{PE}\] \(= 2.07\)
 + No deficit \((0<\text{DI}<16.7)\)
- Index of humidity \[\text{HI}=100*\text{s}/\text{PE}\] \(= 75.85\)
 + Strong surplus \((20<\text{HI})\)
- Potential Evapotranspiration \[\text{PE}\] \(= 624.14\)
 + First mesothermic \((570<\text{PE}<712)\)

Thornthwaite (1948)

- Precipitation−effectiveness: 66.06
- Temperature−efficiency: 43.25

NORWAY

<table>
<thead>
<tr>
<th>°C</th>
<th>58°52'N / 5°38'E / 9 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>-0.6</td>
<td></td>
</tr>
</tbody>
</table>

| 1084.6 mm |
|---|---|
| 10 | |
| 20 | |
| 30 | |
| 40 | |

STAVANGER SOLA

<table>
<thead>
<tr>
<th>mm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td></td>
</tr>
<tr>
<td>370</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

STAVANGER SOLA (NORWAY)

Latitude: 58°52'N
Longitude: 5°38'E
Altitude: 9 m

BIOCLIMATIC INDICES II

Bioclimatic classification of Gaussen & Bagnouls (1957)
- Climate ...: A. Warm and temperate warm
- Region ...: 7. Mesoaxeric (Axeric temperate)
- Thermic type: 5. Meso-microthermic

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P−E ratio</td>
<td>0.81</td>
<td>0.55</td>
<td>0.42</td>
<td>0.37</td>
<td>0.24</td>
<td>0.31</td>
<td>0.38</td>
<td>0.56</td>
<td>0.63</td>
<td>0.77</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>T−E ratio</td>
<td>0.63</td>
<td>0.63</td>
<td>1.38</td>
<td>2.75</td>
<td>4.75</td>
<td>5.75</td>
<td>6.87</td>
<td>6.87</td>
<td>5.63</td>
<td>4.00</td>
<td>2.50</td>
<td>1.50</td>
</tr>
</tbody>
</table>
| Precipitation-effectiveness: 66.06 | Temperature-efficiency: 43.25

- Moisture Index \[\text{MI}=100*(\text{P}-\text{PE})/\text{PE}\] \(= 73.77\)
 + B3. Humid high-humid \((60<\text{MI}<80)\)
- Index of dryness \[\text{DI}=100*\text{d}/\text{PE}\] \(= 2.07\)
 + No deficit \((0<\text{DI}<16.7)\)
- Index of humidity \[\text{HI}=100*\text{s}/\text{PE}\] \(= 75.85\)
 + Strong surplus \((20<\text{HI})\)
- Potential Evapotranspiration \[\text{PE}\] \(= 624.14\)
 + First mesothermic \((570<\text{PE}<712)\)