Phytosociological Research Center
www.globalbioclimatics.org
Worldwide Bioclimatic Classification System
Prof. Dr. Salvador Rivas-Martinez
(Adapted to Synoptical Table 30/08/2017)

SAO BORJA (BRAZIL)
Altitude: 99 m.

Latitude: 28°39'S Longitude: 56°0'W
Temperature observation period.: 1957−1977 (21)
Rainfall observation period.: 1957−1977 (21)

<table>
<thead>
<tr>
<th>Month</th>
<th>Ti</th>
<th>Mi</th>
<th>mi</th>
<th>M'i</th>
<th>m'i</th>
<th>Pi</th>
<th>EPi(C/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>26.70</td>
<td>31.40</td>
<td>19.80</td>
<td>36.90</td>
<td>13.40</td>
<td>137.0</td>
<td>163.15</td>
</tr>
<tr>
<td>Feb.</td>
<td>26.30</td>
<td>31.40</td>
<td>19.50</td>
<td>36.20</td>
<td>13.60</td>
<td>131.0</td>
<td>135.56</td>
</tr>
<tr>
<td>Mar.</td>
<td>24.30</td>
<td>29.10</td>
<td>17.80</td>
<td>34.90</td>
<td>11.00</td>
<td>152.0</td>
<td>116.94</td>
</tr>
<tr>
<td>Apr.</td>
<td>21.00</td>
<td>24.40</td>
<td>14.90</td>
<td>32.90</td>
<td>13.60</td>
<td>104.0</td>
<td>50.08</td>
</tr>
<tr>
<td>May.</td>
<td>18.00</td>
<td>23.10</td>
<td>11.90</td>
<td>29.50</td>
<td>16.00</td>
<td>101.0</td>
<td>33.93</td>
</tr>
<tr>
<td>Jun.</td>
<td>15.70</td>
<td>20.70</td>
<td>10.20</td>
<td>29.00</td>
<td>10.00</td>
<td>84.0</td>
<td>35.37</td>
</tr>
<tr>
<td>Jul.</td>
<td>15.60</td>
<td>21.00</td>
<td>10.00</td>
<td>31.00</td>
<td>2.10</td>
<td>100.0</td>
<td>39.02</td>
</tr>
<tr>
<td>Aug.</td>
<td>18.30</td>
<td>23.10</td>
<td>12.10</td>
<td>32.60</td>
<td>3.90</td>
<td>128.0</td>
<td>56.59</td>
</tr>
<tr>
<td>Sep.</td>
<td>21.10</td>
<td>25.90</td>
<td>13.70</td>
<td>33.40</td>
<td>7.20</td>
<td>138.0</td>
<td>87.83</td>
</tr>
<tr>
<td>Oct.</td>
<td>23.50</td>
<td>28.30</td>
<td>15.60</td>
<td>34.90</td>
<td>9.00</td>
<td>132.0</td>
<td>115.22</td>
</tr>
<tr>
<td>Nov.</td>
<td>25.70</td>
<td>30.40</td>
<td>18.20</td>
<td>35.80</td>
<td>11.60</td>
<td>136.0</td>
<td>151.05</td>
</tr>
<tr>
<td>Dec.</td>
<td>21.01</td>
<td>25.78</td>
<td>14.48</td>
<td>32.97</td>
<td>7.12</td>
<td>1499</td>
<td>1059.1</td>
</tr>
<tr>
<td>Year</td>
<td>21.01</td>
<td>25.78</td>
<td>14.48</td>
<td>32.97</td>
<td>7.12</td>
<td>1499</td>
<td>1059.1</td>
</tr>
</tbody>
</table>

BIOCLIMATIC INDICES AND DIAGNOSIS

- Thermicity index...............(It): 519
- Compensated thermicity index........(Itc): 519
- Simple continentality index...........(Ic): 11.1
- Diurnality index...................(Id): 12.7
- Annual ombrothermic index.........(Io): 5.95
- Monthly dry ombrothermic index........(Iod1): 5.38
- Bimonthly dry ombrothermic index......(Iod2): 5.84
- Threemonthly dry ombrothermic index....(Iod3): 6.04
- Fourmonthly dry ombrothermic index......(Iod4): 5.97
- Annual ombro-evaporation index.........(Ioe): 1.23
- Annual positive temperature..........(Tp): 2521
- Annual negative temperature.........(Tn): 0
- Dry station temperature.............(Td): 472
- Positive precipitation................(Pp): 1499

<table>
<thead>
<tr>
<th>N. of Months</th>
<th>P>4T</th>
<th>P:2T-4T</th>
<th>PT-2T</th>
<th>P<T</th>
<th>T<0</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Latitudinal Belt...: Subtropical
Continentality.....: Oceanic - High Semi hyperoceanic
Bioclimate(Variant): TROPICAL PLUVIAL (HYGROPHYTIC)
Bioclimatic Belt...: UPPER THERMOTROPICAL UPPER SUBHUMID
SAO BORJA (BRAZIL) 99 m

P= 1499 mm 28° 39’S 56° 0’W 21/21 y.
T= 21.0° Ic= 11.1° Tp= 2521 mm Tn= 0
m= 10.2° M= 20.7° Itc= 519 mm Io= 5.9°

M’= 36.9°
m’= 0.9°

TROPICAL PLUVIAL (HYGROPHYTIC)
UPPER THERMOTROPICAL UPPER SUBHUMID

WATER INDEX CARD SAO BORJA (BRAZIL)
Altitude: 99 m. Latitude: 28° 39’S

<table>
<thead>
<tr>
<th>(C/mm)</th>
<th>T PE</th>
<th>P VR</th>
<th>R RE</th>
<th>DF SP</th>
<th>DR HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul.</td>
<td>15.6</td>
<td>35</td>
<td>84</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Aug.</td>
<td>15.9</td>
<td>39</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Sep.</td>
<td>18.3</td>
<td>57</td>
<td>128</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Oct.</td>
<td>21.1</td>
<td>88</td>
<td>138</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Nov.</td>
<td>23.5</td>
<td>115</td>
<td>132</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Dec.</td>
<td>25.7</td>
<td>151</td>
<td>136</td>
<td>-15</td>
<td>85</td>
</tr>
<tr>
<td>Jan.</td>
<td>26.7</td>
<td>163</td>
<td>137</td>
<td>-26</td>
<td>59</td>
</tr>
<tr>
<td>Feb.</td>
<td>26.3</td>
<td>136</td>
<td>131</td>
<td>-5</td>
<td>54</td>
</tr>
<tr>
<td>Mar.</td>
<td>24.3</td>
<td>117</td>
<td>152</td>
<td>35</td>
<td>89</td>
</tr>
<tr>
<td>Apr.</td>
<td>21.0</td>
<td>74</td>
<td>156</td>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>May.</td>
<td>18.0</td>
<td>50</td>
<td>104</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Jun.</td>
<td>15.7</td>
<td>34</td>
<td>101</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Year</td>
<td>21.0</td>
<td>1059</td>
<td>1499</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

R = Reserve VR = Variation of the reserve RE = Real evapotranspiration
DR = Drainage HC = Humidity coefficient DF = Deficit SP = Superavit

SAO BORJA (BRAZIL)

28°39’S 56°0’W 99 m 21/21 y.

T= 21.0° Ic= 11.1°
M= 10.2° Tp= 2521 mm
M’= 36.9° Itc= 519 mm
m’= 0.9° Io= 5.9°
P= 1499 mm
PE= 1059 mm

Imbibing 4 Feb.
Saturation 4 Apr.
Reserve Use 16 Nov.
Deficit

J J A S O N D J F M A M J

2
SAO BORJA (BRAZIL)
Latitude: 28°39'S Longitude: 56°0'W Altitude: 99 m

SUMMARY OF RIVAS-MARTINEZ CLASSIFICATION

Contintality Index
+ Type: B. Oceanic
+ Subtype: 1. Semihypperoceanic
+ Variant: a. High

Thermic types
+ Latitudinal zone: A. Warm
+ Latitudinal belt: 3. Subtropical
+ Thermic type: A. Warm
+ Thermic subtype: 2. Warm

Bioclimatic types
+ Macrobioclimate: A. TROPICAL
+ Bioclimate: 5. PLUVIAL
+ Bioclimatic variant : a. UPPER
+ Thermic type........: 2. THERMOTROPICAL
+ Thermic subtype.....: a. UPPER
+ Ombrothermic type ...: 6. SUBHUMID
+ Ombrothermic subtype : a. UPPER

Bioclimatic Classification: Trhd.Ttr.Shu

SAO BORJA (BRAZIL)
Latitude: 28°39'S Longitude: 56°0'W Altitude: 99 m

PRECIPITATION PARAMETERS

<table>
<thead>
<tr>
<th>Rainfall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tr1-W</td>
<td>Tr2-P</td>
<td>Tr3-S</td>
<td>Tr4-F</td>
</tr>
<tr>
<td>Positive precipitation warmest 3 months........(Pps): 404</td>
<td>412</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive precipitation warmest 2 months.........(Pps2): 268</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive precipitation warmest 1 month..........(Pps1): 137</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive precipitation coldest 3 months..........(Ppw): 285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive precipitation coldest 2 months.........(Ppw2): 185</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive precipitation coldest 1 month..........(Ppw1): 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seasons
Rainfall
Winter Tr1-W 285
Spring Tr2-P 398
Summer Tr3-S 404
Autumn Tr4-F 412

Seasonal rainfall rhythms: F > S > P > W

SAO BORJA (BRAZIL)
Latitude: 28°39'S Longitude: 56°0'W Altitude: 99 m

TEMPERATURE PARAMETERS

<table>
<thead>
<tr>
<th>Temperature Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average warmest month [T].................(Tmax): 26.7</td>
<td></td>
</tr>
<tr>
<td>Average coldest month [T]...................(Tmin): 15.6</td>
<td></td>
</tr>
<tr>
<td>Maximum temp. warmest month [M]...........(Tmmax): 31.4</td>
<td></td>
</tr>
<tr>
<td>Minimum temp. coldest month [m]..........(Tmmin): 10.0</td>
<td></td>
</tr>
<tr>
<td>Absolute Max.temp. warmest month [M'].....(Tamax): 36.9</td>
<td></td>
</tr>
<tr>
<td>Absolute Min.temp. coldest month [m'].....(Tamin): 0.9</td>
<td></td>
</tr>
<tr>
<td>First warmest contrasted month [M].......(Tcmax): 28.3 (11)</td>
<td></td>
</tr>
<tr>
<td>First coldest contrasted month [m]........(Tcmin): 15.6 (11)</td>
<td></td>
</tr>
<tr>
<td>Dry station temperature....................(Td): 472</td>
<td></td>
</tr>
<tr>
<td>Positive temperature dryest 3 months........(Tpd): 472</td>
<td></td>
</tr>
<tr>
<td>Positive temperature dryest 2 months.......(Tpd2): 315</td>
<td></td>
</tr>
<tr>
<td>Positive temperature dryest 1 month........(Tpd1): 156</td>
<td></td>
</tr>
<tr>
<td>Positive temperature warmest 3 months......(Tps): 787</td>
<td></td>
</tr>
<tr>
<td>Positive temperature warmest 2 months......(Tps2): 530</td>
<td></td>
</tr>
<tr>
<td>Positive temperature warmest 1 month.......(Tps1): 267</td>
<td></td>
</tr>
<tr>
<td>Positive temperature coldest 3 months......(Tpw): 472</td>
<td></td>
</tr>
<tr>
<td>Positive temperature coldest 2 months......(Tpw2): 313</td>
<td></td>
</tr>
<tr>
<td>Positive temperature coldest 1 month.......(Tpw1): 156</td>
<td></td>
</tr>
</tbody>
</table>
Seasonal Parameters

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmest semester...(SmS)</td>
<td></td>
</tr>
<tr>
<td>Dryest semester....(Smd)</td>
<td></td>
</tr>
<tr>
<td>Warmest 4 months...(Cm1)</td>
<td></td>
</tr>
<tr>
<td>Dryest 4 months....(Cmd)</td>
<td></td>
</tr>
<tr>
<td>Vegetation Activity(Pav)</td>
<td></td>
</tr>
<tr>
<td>Ultragelid...M'<=0</td>
<td></td>
</tr>
<tr>
<td>Hypergelid....M <=0</td>
<td></td>
</tr>
<tr>
<td>Gelid..........T <=0</td>
<td></td>
</tr>
<tr>
<td>Subgelid.....m <=0</td>
<td></td>
</tr>
<tr>
<td>Fregelid.....m'<=0</td>
<td></td>
</tr>
<tr>
<td>Agelid.......m'> 0</td>
<td></td>
</tr>
<tr>
<td>HiperAgelid...all>0</td>
<td></td>
</tr>
</tbody>
</table>

Ombrothermic Parameters

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp(x10)</td>
<td>1360</td>
<td>1370</td>
<td>1310</td>
<td>1520</td>
<td>1560</td>
<td>1040</td>
<td>1010</td>
<td>840</td>
<td>1000</td>
<td>1280</td>
<td>1380</td>
<td>1320</td>
</tr>
<tr>
<td>Tp</td>
<td>257</td>
<td>267</td>
<td>263</td>
<td>243</td>
<td>210</td>
<td>180</td>
<td>157</td>
<td>156</td>
<td>159</td>
<td>183</td>
<td>213</td>
<td>235</td>
</tr>
<tr>
<td>Io (Iom)</td>
<td>5.29</td>
<td>5.13</td>
<td>4.98</td>
<td>4.26</td>
<td>7.43</td>
<td>5.78</td>
<td>6.43</td>
<td>5.38</td>
<td>6.29</td>
<td>6.99</td>
<td>6.54</td>
<td>5.62</td>
</tr>
<tr>
<td>Seasons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>Autumn</td>
<td>Winter</td>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pp(x10)/Tp</td>
<td>4040</td>
<td>787</td>
<td>4120</td>
<td>633</td>
<td>2850</td>
<td>472</td>
<td>3980</td>
<td>629</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dec.-May</th>
<th>June- November</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pp(x10)/Tp</td>
<td>8160 / 1420</td>
<td>6830 / 1101</td>
</tr>
<tr>
<td>Io (Iosm)</td>
<td>5.746</td>
<td>6.203</td>
</tr>
</tbody>
</table>

Aridity Value Index (AVI)

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[10xPp/TP=IO]:</td>
<td>14990/2521 = 5.95</td>
<td>There is No Yearly Aridity</td>
<td></td>
</tr>
<tr>
<td>Pp [P'10]</td>
<td>1360</td>
<td>1370</td>
<td>1310</td>
<td>1520</td>
<td>1560</td>
<td>1040</td>
<td>1010</td>
<td>840</td>
<td>1000</td>
<td>1280</td>
<td>1380</td>
<td>1320</td>
</tr>
<tr>
<td>Tp [T'10]</td>
<td>257</td>
<td>267</td>
<td>263</td>
<td>243</td>
<td>210</td>
<td>180</td>
<td>157</td>
<td>156</td>
<td>159</td>
<td>183</td>
<td>213</td>
<td>235</td>
</tr>
<tr>
<td>Iom [Pp/Tp]</td>
<td>529</td>
<td>513</td>
<td>498</td>
<td>482</td>
<td>743</td>
<td>578</td>
<td>643</td>
<td>538</td>
<td>629</td>
<td>699</td>
<td>654</td>
<td>562</td>
</tr>
<tr>
<td>Avm [200-Iom]</td>
<td>***</td>
</tr>
<tr>
<td>Seasons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>Autumn</td>
<td>Winter</td>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pp / Tp</td>
<td>4040</td>
<td>787</td>
<td>4120</td>
<td>633</td>
<td>2850</td>
<td>472</td>
<td>3980</td>
<td>629</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Io (Iot)</td>
<td>513</td>
<td>651</td>
<td>604</td>
<td>633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avs E[Avm<200]</td>
<td>***</td>
</tr>
</tbody>
</table>
SAO BORJA (BRAZIL)
Latitude: 28°39’S Longitude: 56°0’W Altitude: 99 m

BIOCLIMATIC INDICES I
CI of Supan (1884) \[\text{Tmax}−\text{Tmin}\](Sp): 11.10
CI of Gorezinski (1920) \[1.7*\text{Sp}/\sin(\text{Lat})−20.4\]: 18.96
CI of Conrad (1946) \[1.7*\text{Sp}/\sin(\text{Lat}+10)−14\]: 16.21
 + Hyperoceanic (-20<CI<20)
CI of Currey (1974) \[\text{CI}=\text{Sp}/(1+\text{Lat}/3)\]: 1.05
 + Oceanic (0.6<CI<1.1)
Rainfall Index of Lang (1925) \[R=\text{P}/\text{T}\]: 71.35
 + Temperate warm (100>R>60)
Aridity Index of Martonne (1926) \[I_a=\text{P}/(\text{T}+10)\]: 48.34
 + Humid (60>Ia>30)
I of Emberger (1930) \[Q=100*\text{P}/(\text{Tmax}^2−\text{Tmin}^2)\]: 169.20
 + Humid (Q>90)
I of Dantin & Revenga (1940) \[\text{DR}=100*\text{T}/\text{P}\]: 1.40
 + Humid (2>DR>0)
Aridity Index of UNEP \[I=\text{P}/\text{PE}\]: 1.42
 + Humid (I>0.65)
Potencial Erosion I of Fournier (1960) \[K=\text{Pi}^2/\text{P}\].....: 16.23
 + Very low (K<60)

SAO BORJA (BRAZIL)
Latitude: 28°39’S Longitude: 56°0’W Altitude: 99 m

BIOCLIMATIC INDICES II

Bioclimatic classification of Gaussen & Bagnouls (1957)
 + Climate: A. Warm and temperate warm
 + Region: 6. Termoaxeric (Axeric warm)
 + Thermic type: 2. Macrothermic

Thornthwaite (1948)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P−E ratio</td>
<td>0.50</td>
<td>0.48</td>
<td>0.60</td>
<td>0.67</td>
<td>0.46</td>
<td>0.47</td>
<td>0.39</td>
<td>0.47</td>
<td>0.57</td>
<td>0.58</td>
<td>0.52</td>
</tr>
<tr>
<td>T−E ratio</td>
<td>12.02</td>
<td>11.83</td>
<td>10.93</td>
<td>9.45</td>
<td>8.10</td>
<td>7.06</td>
<td>7.02</td>
<td>7.15</td>
<td>8.23</td>
<td>9.50</td>
<td>10.57</td>
</tr>
</tbody>
</table>

Precipitation-effectiveness: 62.17 Temperature-efficiency: 113.44

Moisture Index \[\text{MI}=100*(\text{P−PE})/\text{PE}\]: 41.54
 + B2. Humid medium-humid (40<MI<60)
Index of dryness \[\text{DI}=100*\text{d}/\text{PE}\]: 0.00
 + No deficit (0<DI<16.7)
Index of humidity \[\text{HI}=100*\text{s}/\text{PE}\]: 41.54
 + Strong surplus (20<HI)
Potential Evapotranspiration \[\text{PE} \]: 1059.09
 + Forth mesothermic (997<PE<1440)